starting out with >>> C

EARLY OBJECTS

EIGHTH EDITION

oW
A A ML

TONY GADDIS - JUDY WALTERS - GODFREY MUGANDA

\ ';3:~.. % -'-.

il iliﬂ

get with the programming

Through the power of practice and immediate personalized

feedback, MyProgramminglLab improves your performance.

MyProgramminglab™

Learn more at www.myprogramminglab.com

ALWAYS LEARNING PEARSON

www.myprogramminglab.com

This page intentionally left blank

LOCATION OF VIDEONOTES IN THE TEXT D

VideoNote

Chapter 1 Designing a Program with Pseudocode, p. 20
Designing the Account Balance Program, p. 24
Predicting the Output of Problem 30, p. 25
Solving the Candy Bar Sales Problem, p. 26

Chapter 2 Using cout to Display Output, p. 32
Assignment Statements, p. 60
Arithmetic Operators, p. 61
Solving the Restaurant Bill Problem, p. 73

Chapter 3 Using cin to Read Input, p. 77
Evaluating Mathematical Expressions, p. 84
Combined Assignment Operators, p. 105
Solving the Stadium Seating Problem, p. 149

Chapter 4 Using an if Statement, p. 160
Using an if/else Statement, p. 169
Using an if/else if Statement, p. 174
Using Logical Operators, p. 187
Solving the Time Calculator Problem, p. 236

Chapter 5 The while Loop, p. 244
The for Loop, p. 266
Nested Loops, p. 277
Solving the Ocean Levels Problem, p. 318

Chapter 6 Defining and Calling Functions, p. 324
Using Function Arguments, p. 334
Value-Returning Functions, p. 344
Solving the Markup Problem, p. 399

Chapter 7 Creating a Class, p. 412
Creating and Using Class Objects, p. 414
Creating and Using Structures, p. 454
Solving the car Class Problem, p. 498

Chapter 8 Accessing Array Elements, p. 505
Passing an Array to a Function, p. 535
Two-Dimensional Arrays, p. 545
Solving the Chips and Salsa Problem, p. 586

Chapter 9 Performing a Binary Search, p. 598
Sorting a Set of Data, p. 605
Solving the Lottery Winners Problem, p. 634

(continued on next page)

LOCATION OF VIDEONOTES IN THE TEXT (continued) O

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

VideoNote

Pointer Variables, p. 639
Dynamically Allocating an Array, p. 663
Solving the Days in Current Month Problem, p. 693

Operator Overloading, p. 722

Aggregation and Composition, p. 752

Overriding Base Class Functions, p. 773

Solving the Number of Days Worked Problem, p. 786

Converting Strings to Numbers, p. 806
Writing a C-String Handling Function, p. 811
Solving the Case Manipulator Problem, p. 834

The get Family of Member Functions, p. 853
Rewinding a File, p. 857
Solving the File Encryption Filter Problem, p. 895

Recursive Binary Search, p. 911
QuickSort, p. 913
Solving the Recursive Multiplication Problem, p. 931

Polymorphism, p. 939
Composition versus Inheritance, p. 950
Solving the Sequence Sum Problem, p. 968

Throwing and Handling Exceptions, p. 972

Writing a Function Template, p. 984

Iterators, p. 1002

Solving the Arithmetic Exceptions Problem, p. 1018

Adding an Element to a Linked List, p. 1029
Removing an Element from a Linked List, p. 1036
Solving the Member Insertion by Position Problem, p. 1067

Storing Objects in an STL Stack, p. 1081
Storing Objects in an STL Queue, p. 1095
Solving the File Reverser Problem, p. 1107

Inserting an Element into a Binary Tree, p. 1116
Removing an Element from a Binary Tree, p. 1120
Solving the Tree Size Problem, p. 1136

il Starting Out with

C++
Early Objects

Tony Gaddis
Judy Walters
Godfrey Muganda

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director, ECS: Marcia Horton Cover Designer: Joyce Wells

Executive Editor: Matt Goldstein Manager, Rights and Permissions: Michael Joyce

Editorial Assistant: Jenah Blitz-Stoehr Text Permission Coordinator: Jackie Bates, GEX inc.

Director of Marketing: Christy Lesko Cover Image: Svetlana Kuznetsova / Shutterstock

Marketing Manager: Yezan Alayan Media Project Manager: Renata Butera

Senior Senior Marketing Coordinator: Kathryn Full-Service Project Management: Mohinder Singh/
Ferranti Aptara®, Inc.

Director of Production: Erin Gregg Composition: Aptara®, Inc.

Senior Managing Editor: Scott Disanno Printer/Binder: Edwards Brothers

Production Project Manager: Kayla Smith-Tarbox Cover Printer: Lehigh-Phoenix Color/Hagerstown

Manufacturing Buyer: Lisa McDowell Text Font: Sabon

Art Director: Anthony Gemmellaro

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on
appropriate page within text.

Credits: Figure 1-1a: Microsoft Powerpoint and Microsoft Word, Microsoft Corporation. 2010.

Reference: The most commonly used method for encoding characters is ASCIL...(cont.)The American Standard Code for
Information Interchange. American National Standards Institute. 2012.

Reference: “QuickSort is a recursive sorting algorithm that was invented in 1960 by C. A. R. Hoare.” Hoare, C.A.R.
“QuickSort”. Oxford University Press. 1960.

Copyright © 2012 by Microsoft Corporation. Used with permission from Microsoft.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the
documents and related graphics published as part of the services for any purpose. All such documents and related graphics are
provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and
conditions with regard to this information, including all warranties and conditions of merchantability, whether express,
implied or statutory, fitness for a particular purpose, title and non-infringement. in no event shall Microsoft and/or its
respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss
of use, data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection
with the use or performance of information available from the services. The documents and related graphics contained herein
could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein.
Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s)
described herein at any time. Partial screen shots may be viewed in full within the software version specified.

The programs and applications presented in this book have been included for their instructional value. They have been tested
with care, but are not guaranteed for any particular purpose. The publisher does not offer any warranties or representations,
nor does it accept any liabilities with respect to the programs or applications.

Copyright © 2014, 2008. Pearson Education, Inc., publishing as Addison-Wesley, 501 Boylston Street, Suite 900, Boston,
Massachusetts 02116. All rights reserved. Manufactured in the United States of America. This publication is protected by
Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain
permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Gaddis, Tony.
Starting out with C++ : early objects / Tony Gaddis, Judy Walters, Godfrey
Muganda.—Eighth edition.
pages cm

ISBN-13: 978-0-13-336092-9

ISBN-10: 0-13-336092-X

1. C++ (Computer program language) 1. Walters, Judy. II. Muganda, Godfrey. III. Title.

QA76.73.C153G33 2014

005.13°3—dc23 2012045400

10987654321

ISBN 10: 0-13-336092-X
PEARSON ISBN 13: 978-0-13-336092-9

10000
0
ooooonogd
1)) i

i A |
1aaad
oooo
Oooo
1 00o0ag

CHAPTER 1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

CHAPTER 2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

Contents

Preface xiii

Introduction to Computers and Programming 1

Why Program? 1

Computer Systems: Hardware and Software 3
Programs and Programming Languages 7
What Is a Program Made of? 13

Input, Processing, and Output 17

The Programming Process 18

Tying It All Together: Hi! It’s Me 23

Introduction to C++ 27

The Parts of a C++ Program 27

The cout Object 31

The #include Directive 36

Standard and Prestandard C++ 37

Variables, Literals, and the Assignment Statement 38
Identifiers 42

Integer Data Types 43

Floating-Point Data Types 49

The char Data Type 52

The C++ string Class 56

The bool Data Type 58

Determining the Size of a Data Type 59

More on Variable Assignments and Initialization 59
Scope 61

Arithmetic Operators 61

Comments 65

Programming Style 67

Tying It All Together: Smile! 69

vii

viii Contents

CHAPTER 3 Expressions and Interactivity 77

3.1 The cin Object 77

3.2 Mathematical Expressions 84

3.3 Data Type Conversion and Type Casting 91

3.4 Overflow and Underflow 98

3.5 Named Constants 99

3.6 Multiple and Combined Assignment 104

3.7 Formatting Output 108

3.8 Working with Characters and Strings 118

3.9 Using C-Strings 125

3.10 More Mathematical Library Functions 131

3.11 Focus on Debugging: Hand Tracing a Program 136
3.12 Green Fields Landscaping Case Study—Part 1 138
3.13 Tying It All Together: Word Game 140

CHAPTER 4 Making Decisions 155

4.1 Relational Operators 155

4.2 The if Statement 160

4.3 The if/else Statement 169

4.4 The if/else if Statement 174

4.5 Menu-Driven Programs 181

4.6 Nested if Statements 183

4.7 Logical Operators 187

4.8 Validating User Input 196

4.9 More About Blocks and Scope 197

4.10 More About Characters and Strings 200

4.11 The Conditional Operator 207

4.12 The switch Statement 210

4.13 Enumerated Data Types 219

4.14 Focus on Testing and Debugging: Validating Output Results 222
4.15 Green Fields Landscaping Case Study—Part 2 225
4.16 Tying It All Together: Fortune Teller 229

CHAPTER 5 Looping 243

5.1 Introduction to Loops: The while Loop 243

52 Using the while Loop for Input Validation 250

5.3 The Increment and Decrement Operators 252

5.4 Counters 258

5.5 The do-while Loop 260

5.6 The for Loop 266

5.7 Keeping a Running Total 272

5.8 Sentinels 274

5.9 Focus on Software Engineering: Deciding Which Loop to Use 276
5.10 Nested Loops 277

5.11 Breaking Out of a Loop 280

5.12 Using Files for Data Storage 284

5.13 Focus on Testing and Debugging: Creating Good Test Data 302
5.14 Central Mountain Credit Union Case Study 305

5.15 Tying It All Together: What a Colorful World 309

CHAPTER 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

CHAPTER 7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

7.12
7.13
7.14
7.15
7.16

CHAPTER 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

Contents

Functions 323

Modular Programming 323

Defining and Calling Functions 324

Function Prototypes 332

Sending Data into a Function 334

Passing Data by Value 339

The return Statement 343

Returning a Value from a Function 344
Returning a Boolean Value 350

Using Functions in a Menu-Driven Program 352
Local and Global Variables 355

Static Local Variables 363

Default Arguments 365

Using Reference Variables as Parameters 369
Overloading Functions 377

The exit () Function 382

Stubs and Drivers 384

Little Lotto Case Study 387

Tying It All Together: Glowing Jack-o-lantern 392

Introduction to Classes and Objects 407

Abstract Data Types 407

Object-Oriented Programming 409

Introduction to Classes 411

Creating and Using Objects 414

Defining Member Functions 416

Constructors 423

Destructors 429

Private Member Functions 432

Passing Objects to Functions 435

Object Composition 442

Focus on Software Engineering: Separating Class Specification,
Implementation, and Client Code 446

Structures 453

Home Software Company OOP Case Study 467

Introduction to Object-Oriented Analysis and Design 474

Screen Control 484

Tying It All Together: Yoyo Animation 489

Arrays 503

Arrays Hold Multiple Values 503

Accessing Array Elements 505

Inputting and Displaying Array Contents 507
Array Initialization 514

Processing Array Contents 520

Using Parallel Arrays 531

The typedef Statement 535

Arrays as Function Arguments 535
Two-Dimensional Arrays 545

Arrays with Three or More Dimensions 553

ix

Contents

8.11
8.12
8.13
8.14

CHAPTER 9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

CHAPTER 10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14

CHAPTER 11

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14

Vectors 556

Arrays of Objects 568

National Commerce Bank Case Study 578
Tying It All Together: Rock, Paper, Scissors 580

Searching, Sorting, and Algorithm Analysis 595

Introduction to Search Algorithms 595
Searching an Array of Objects 602
Introduction to Sorting Algorithms 605
Sorting an Array of Objects 614

Sorting and Searching Vectors 617
Introduction to Analysis of Algorithms 619
Case Studies 627

Tying It All Together: Secret Messages 628

Pointers 637

Pointers and the Address Operator 637

Pointer Variables 639

The Relationship Between Arrays and Pointers 643

Pointer Arithmetic 647

Initializing Pointers 648

Comparing Pointers 650

Pointers as Function Parameters 653

Pointers to Constants and Constant Pointers 657

Focus on Software Engineering: Dynamic Memory Allocation 661
Focus on Software Engineering: Returning Pointers from Functions 666
Pointers to Class Objects and Structures 670

Focus on Software Engineering: Selecting Members of Objects 676
United Cause Relief Agency Case Study 678

Tying It All Together: Pardon Me, Do You Have the Time? 686

More About Classes and Object-Oriented Programming 695

The this Pointer and Constant Member Functions 695
Static Members 700

Friends of Classes 707

Memberwise Assignment 712

Copy Constructors 713

Operator Overloading 722

Type Conversion Operators 746

Convert Constructors 749

Aggregation and Composition 752

Inheritance 758

Protected Members and Class Access 763

Constructors, Destructors, and Inheritance 768
Overriding Base Class Functions 773

Tying It All Together: Putting Data on the World Wide Web 775

CHAPTER 12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

CHAPTER 13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9

CHAPTER 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10

CHAPTER 15

15.1
15.2
15.3
15.4
15.5
15.6

CHAPTER 16

l6.1
16.2
16.3
16.4
16.5
16.6

Contents

More on C-Strings and the string Class 789

C-Strings 789

Library Functions for Working with C-Strings 794
Conversions Between Numbers and Strings 805

Writing Your Own C-String Handling Functions 811

More About the C++ string Class 816

Creating Your Own String Class 820

Advanced Software Enterprises Case Study 827

Tying It All Together: Program Execution Environments 828

Advanced File and 1/0 Operations 837

Input and Output Streams 837

More Detailed Error Testing 845

Member Functions for Reading and Writing Files 848

Binary Files 861

Creating Records with Structures 865

Random-Access Files 870

Opening a File for Both Input and Output 876

Online Friendship Connections Case Study: Object Serialization 881
Tying It All Together: File Merging and Color-Coded HTML 887

Recursion 899

Introduction to Recursion 899

The Recursive Factorial Function 906

The Recursive ged Function 908

Solving Recursively Defined Problems 909

A Recursive Binary Search Function 911

Focus on Problem Solving and Program Design: The QuickSort Algorithm 913
The Towers of Hanoi 917

Focus on Problem Solving: Exhaustive and Enumeration Algorithms 920
Focus on Software Engineering: Recursion versus Iteration 924

Tying It All Together: Infix and Prefix Expressions 925

Polymorphism and Virtual Functions 933

Type Compatibility in Inheritance Hierarchies 933

Polymorphism and Virtual Member Functions 939

Abstract Base Classes and Pure Virtual Functions 944

Focus on Object-Oriented Programming: Composition versus Inberitance 950
Secure Encryption Systems, Inc., Case Study 955

Tying It All Together: Let’s Move It 959

Exceptions, Templates, and the Standard Template Library (STL) 971

Exceptions 971

Function Templates 983

Class Templates 991

Class Templates and Inheritance 996

Introduction to the Standard Template Library 1000
Tying It All Together: Word Transformers Game 1013

xi

xii

Contents

CHAPTER 17

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8

CHAPTER 18

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8

CHAPTER 19

19.1
19.2
19.3
19.4

Linked Lists 1021

Introduction to the Linked List ADT 1021

Linked List Operations 1027

A Linked List Template 1039

Recursive Linked List Operations 1043

Variations of the Linked List 1052

The STL 1ist Container 1052

Reliable Software Systems, Inc., Case Study 1054

Tying It All Together: More on Graphics and Animation 1058

Stacks and Queues 1069

Introduction to the Stack ADT 1069

Dynamic Stacks 1077

The STL stack Container 1080

Introduction to the Queue ADT 1082

Dynamic Queues 1090

The STL deque and queue Containers 1094

Focus on Problem Solving and Program Design: Eliminating Recursion 1096
Tying It All Together: Converting Postfix Expressions to Infix 1101

Binary Trees 1109

Definition and Applications of Binary Trees 1109
Binary Search Tree Operations 1113

Template Considerations for Binary Search Trees 1129
Tying It All Together: Genealogy Trees 1129

Appendix A: The ASCIl Character Set 1139

Appendix B: Operator Precedence and Associativity 1143
Appendix C: Answers to Checkpoints 1145

Appendix D: Answers to Odd-Numbered Review Questions 1185
Index 1207

Additional Appendices

The following appendices are located on the book’s companion web site.

Appendix E: A Brief Introduction to Object-Oriented Programming
Appendix F: Using UML in Class Design

Appendix G: Multi-Source File Programs

Appendix H: Multiple and Virtual Inheritance

Appendix I: Header File and Library Function Reference

Appendix J: Namespaces

Appendix K: C++ Casts and Run-Time Type Identification
Appendix L: Passing Command Line Arguments

Appendix M: Binary Numbers and Bitwise Operations

Appendix N: Introduction to Flowcharting

o
100
.
10O 00
1ooo
0
Ooooo

ooooo
oOoooo

I]

Preface

Welcome to Starting Out with C++: Early Objects, 8th Edition. This book is intended for use
in a two-term or three-term C++ programming sequence, or an accelerated one-term course.
Students new to programming, as well those with prior course work in other languages, will
find this text beneficial. The fundamentals of programming are covered for the novice, while
the details, pitfalls, and nuances of the C++ language are explored in-depth for both the
beginner and more experienced student. The book is written with clear, easy-to-understand
language and it covers all the necessary topics for an introductory programming course. This
text is rich in example programs that are concise, practical, and real world oriented, ensuring
that the student not only learns how to implement the features and constructs of C++, but
why and when to use them.

What's New in the Eighth Edition

This book’s pedagogy and clear writing style remain the same as in the previous edition.
However, many improvements have been made to make it even more student-friendly
and to keep it state of the art for introductory programming using the C++ programming
language.

e Updated Material
Material has been updated throughout the book to reflect changes in technology,
operating systems, and software development environments, as well as to improve
clarity and incorporate best practices in object-oriented programming.

e New Material
New material has been added on a number of topics including expanded coverage on
using files. Chapter 5 now brings together, adds to, and better organizes the material
on files formerly found in Chapters 3, 4, and S.

e Reorganized Chapters
Several chapters have been reorganized to improve student learning. Chapter 2,
Introduction to C++, now covers integer and floating-point data types before introducing
characters and strings. Chapter 5, Looping, now discusses how looping structures are
used before introducing the mechanics of creating them. Chapter 7, Introduction to
Classes and Objects, now revisits a class students already know and have been using, the
string class, before introducing how to create and use their own classes and objects.

xiii

xiv

Preface

e Greater Focus on Object-Oriented Programming
Many examples throughout the text have been rewritten to incorporate appropriate
use of classes and objects.

e Improved Sample Programs
Sample programs have been revised where appropriate to incorporate current best
programming practices. For example, throughout the book functions receiving
objects or arrays whose values should not be changed now use the const keyword to
protect them.

e Improved Diagrams
Many diagrams have been improved and new diagrams added to better illustrate
important concepts.

® New Programming Challenges
New Programming Challenges have been added in many chapters, including a
number of Challenges that ask students to develop object-oriented solutions and to
create solutions that reuse, modify, and build on previously written code.

e Answers in the Book
Answers to all the Checkpoint questions throughout the book and to the odd-
numbered review questions at the end of every chapter are now conveniently located
at the back of the book in Appendices C and D.

Organization of the Text

This text teaches C++ in a step-by-step fashion. Each chapter covers a major set of topics
and builds knowledge as the student progresses through the book. Although the chapters
can be easily taught in their existing sequence, flexibility is provided. The following
dependency diagram (Figure P-1) suggests possible sequences of instruction.

Chapter 1 covers fundamental hardware, software, and programming concepts. The
instructor may choose to skip this chapter if the class has already mastered those topics.
Chapters 2 through 6 cover basic C++ syntax, data types, expressions, selection structures,
repetition structures, and functions. Each of these chapters builds on the previous chapter
and should be covered in the order presented.

Chapter 7 introduces object-oriented programming. It can be covered any time after Chapter 6,
but before Chapter 11. Instructors who prefer to introduce arrays before classes can cover
Chapter 8 before Chapter 7. In this case it is only necessary to postpone Section 8.12
(Arrays of Objects) until Chapter 7 has been covered.

As Figure P-1 illustrates, in the second half of the book Chapters 11, 12, 13, and 14
can be covered in any order. Chapters 11, 15, and 16, however, should be done in
sequence. Instructors who wish to introduce data structures at an earlier point in the
course, without having first covered advanced C++ and OOP features, can cover
Chapter 17 (Linked Lists), followed by Chapters 18 and 19 (Stacks & Queues and
Binary Trees), any time after Chapter 14 (Recursion). In this case it is necessary to
simply omit the sections in Chapters 17-19 that deal with templates and the Standard
Template Library.

Preface

Figure P-1
Chapter 1
Introduction
Chapters 2-6
Basic
Language
Elements
v | v
Chapter 7 Chapter 8
OORP Introduction Arrays
[
Chapter 9 Chapter 10
Searching, Sorting, Pointers
and Algorithm Analysis
I I I
Chapter 11 Chapter 12 Chapter 13 Chapter 14
More OOP Advanced Advanced Files Recursion
Strings and I/0
Chapter 15 Chapter 17
Adv. OOP Linked Lists
¢ I
Chapter 16 ¢ ¢
Exceptions, Chapter 18 Chapter 19
Templates, Stacksand Binary Trees
and STL Queues

XV

XVi

Preface

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter provides an introduction to the field of computer science and covers the
fundamentals of hardware, software, operating systems, programming, problem solving,
and software engineering. The components of programs, such as key words, variables,
operators, and punctuation are covered. The tools of the trade, such as hierarchy charts
and pseudocode, are also presented. The Tying It All Together section shows students
how to use the cout statement to create a personalized output message. Programming
Challenges at the end of the chapter help students see how the same basic input,
processing, and output structure can be used to create multiple programs.

Chapter 2: Introduction to C++

This chapter gets the student started in C++ by introducing the basic parts of a C++ program,
data types, the use of variables and literals, assignment statements, simple arithmetic
operations, program output, and comments. The C++ string class is presented and string
objects are used from this point on in the book as the primary method of handling strings.
Programming style conventions are introduced, and good programming style is modeled here,
as it is throughout the text. An optional section explains the difference between ANSI
standard and prestandard C++ programs. The Tying It All Together section lets the student
play with simple text-based graphics.

Chapter 3: Expressions and Interactivity

In this chapter the student learns to write programs that input and handle numeric,
character, and string data. The use of arithmetic operators and the creation of
mathematical expressions are covered, with emphasis on operator precedence. Debugging
is introduced, with a section on hand tracing a program. Sections are also included on
using random numbers, on simple output formatting, on data type conversion and type
casting, and on using library functions that work with numbers. For those who wish to
cover them, there is also a section on C-strings. The Tying It All Together section shows
students how to create a simple interactive word game.

Chapter 4: Making Decisions

Here the student learns about relational expressions and how to control the flow of a
program with if, if/else, and if/else if statements. Logical operators, the conditional
operator, and the switch statement are also covered. Applications of these constructs,
such as menu-driven programs, are illustrated. This chapter also continues the theme of
debugging with a section on validating output results. The Tying It All Together section
uses random numbers and branching statements to create a fortune telling game.

Chapter 5: Looping

This chapter introduces, C++’s repetitive control mechanisms. The while loop, do-while
loop, and for loop are presented, along with a variety of methods to control them. These
include using counters, user input, end sentinels, and end-of-file testing. Applications
utilizing loops, such as keeping a running total and performing data validation, are also
covered. An extensive new section on working with files has been added, and the emphasis
on testing and debugging continues, with a section on creating good test data. The
chapter’s Tying It All Together section introduces students to Windows commands to
create colorful output and uses a loop to create a multi-colored display.

Preface

Chapter 6: Functions

In this chapter the student learns how and why to modularize programs, using both void and
value-returning functions. Parameter passing is covered, with emphasis on when arguments
should be passed by value versus when they need to be passed by reference. Scope of variables
is covered and sections are provided on local versus global variables and on static local
variables. Overloaded functions are also introduced and demonstrated. The Tying It All
Together section includes a modular, menu-driven program that emphasizes the versatility of
functions, illustrating how their behavior can be controlled by the arguments sent to them.

Chapter 7: Introduction to Classes and Objects

In this chapter the text begins to focus on the object-oriented paradigm. Students have used
provided C++ classes since the beginning of the text, but now they learn how to define their
own classes and to create and use objects of these classes. Careful attention is paid to
illustrating which functions belong in a class versus which functions belong in a client
program that uses the class. Good object-oriented practices are discussed and modeled, such
as protecting member data through carefully constructed accessor and mutator functions and
hiding class implementation details from client programs. Once students are comfortable
working with classes and objects, the chapter provides a brief introduction to the topic of
object-oriented analysis and design. The chapter also introduces structures and uses them
in the Tying It All Together section, where students learn to use screen control techniques to
create an animation that simulates the motion of a yoyo.

Chapter 8: Arrays

In this chapter the student learns to create and work with single and multidimensional
arrays. Many examples of array processing are provided, including functions to compute
the sum, average, highest and lowest values in an array. Students also learn to create tables
using two-dimensional arrays, and to analyze the array data by row or by column.
Programming techniques using parallel arrays are also demonstrated, and the student is
shown how to use a data file as an input source to populate an array. STL vectors are
introduced and compared to arrays. A section on arrays of objects and structures is located
at the end of the chapter, so it can be covered now or saved for later if the instructor wishes
to cover this chapter before Chapter 7. The Tying It All Together section uses arrays to
create a game of Rock, Paper, Scissors between a human player and the computer.

Chapter 9: Searching, Sorting, and Algorithm Analysis

Here the student learns the basics of searching for information stored in arrays and of sorting
arrays, including arrays of objects. The chapter covers the Linear Search, Binary Search,
Bubble Sort, and Selection Sort algorithms and has an optional section on sorting and
searching STL vectors. A brief introduction to algorithm analysis is included, and students
are shown how to determine which of two algorithms is more efficient. This chapter’s
Tying It All Together section uses both a table lookup and a searching algorithm to encode
and decode secret messages.

Chapter 10: Pointers

This chapter explains how to use pointers. Topics include pointer arithmetic, initialization of
pointers, comparison of pointers, pointers and arrays, pointers and functions, dynamic memory
allocation, and more. The Tying It All Together section demonstrates the use of pointers to
access library data structures and functions that return calendar and wall clock time.

xXvii

=3

=

=2

Preface

Chapter 11: More About Classes and Object-Oriented Programming

This chapter continues the study of classes and object-oriented programming. It covers
object aggregation and composition, as well as inheritance, and illustrates the difference
between is-a and has-a relations. Constant member functions, static members, friends,
memberwise assignment, copy constructors, object type conversion operators, convert
constructors, and operator overloading are also included. The Tying It All Together
section brings together the concepts of inheritance and convert constructors to build a
program that formats the contents of an array to form an HTML table for display on a
Web site.

Chapter 12: More on C-Strings and the string Class

This chapter covers standard library functions for working with characters and C-strings,
covering topics such as passing C-strings to functions and using the C++ sstream classes to
convert between numeric and string forms of numbers. Additional material about the C++
string class and its member functions and operators is presented, with a program
illustrating how to write your own string class. The Tying It All Together section shows
students how to access string-based program environments to obtain information about the
computer and the network on which the program is running.

Chapter 13: Advanced File and 1/0 Operations

This chapter introduces more advanced topics for working with sequential access text
files and introduces random access and binary files. Various modes for opening files are
discussed, as well as the many methods for reading and writing their contents. The Tying It
All Together program applies many of the techniques covered in the chapter to merge two
text files into an HTML document for display on the Web, with different colors used to
illustrate which file each piece of data came from.

Chapter 14: Recursion

In this chapter recursion is defined and demonstrated. A visual trace of recursive calls is
provided, and recursive applications are discussed. Many recursive algorithms are
presented, including recursive functions for computing factorials, finding a greatest
common denominator (GCD), performing a binary search, sorting using QuickSort, and
solving the famous Towers of Hanoi problem. For students who need more challenge, there
is a section on exhaustive and enumeration algorithms. The Tying It All Together section
uses recursion to evaluate prefix expressions.

Chapter 15: Polymorphism and Virtual Functions

The study of classes and object-oriented programming continues in this chapter with the
introduction of more advanced concepts such as polymorphism and virtual functions.
Information is also presented on abstract base classes, pure virtual functions, type
compatibility within an inheritance hierarchy, and virtual inheritance. The Tying It All
Together section illustrates the use of inheritance and polymorphism to display and
animate graphical images.

Preface

Chapter 16: Exceptions, Templates, and the Standard Template Library (STL)

Here the student learns to develop enhanced error trapping techniques using exceptions.
Discussion then turns to using function and class templates to create generic code. Finally,
the student is introduced to the containers, iterators, and algorithms offered by the
Standard Template Library (STL). The Tying It All Together section uses various
containers in the Standard Template Library to create an educational children’s game.

Chapter 17: Linked Lists

This chapter introduces concepts and techniques needed to work with lists. A linked list
ADT is developed, and the student learns how to create and destroy a list, as well as to
write functions to insert, append, and delete nodes, to traverse the list, and to search for a
specific node. A linked list class template is also demonstrated. The Tying It All Together
section brings together many of the most important concepts of OOP by using objects,
inheritance, and polymorphism in conjunction with the STL list class to animate a
collection of images.

Chapter 18: Stacks and Queues

In this chapter the student learns to create and use static and dynamic stacks and queues.
The operations of stacks and queues are defined, and templates for each ADT are
demonstrated. The static array-based stack uses exception-handling to handle stack
overflow and underflow, providing a realistic and natural example of defining, throwing,
and catching exceptions. The Tying It All Together section discusses strategies for
evaluating postfix expressions and uses a stack to convert a postfix expression to infix.

Chapter 19: Binary Trees

This chapter covers the binary tree ADT and demonstrates many binary tree operations. The
student learns to traverse a tree, insert, delete, and replace elements, search for a particular
element, and destroy a tree. The Tying It All Together section introduces a tree structure
versatile enough to create genealogy trees.

Xix

XX

Preface

Appendices in the Book

Appendix A: The ASCII Character Set A list of the ASCII and extended ASCII characters
and their codes.

Appendix B: Operator Precedence and Associativity A list of the C++ operators with
their precedence and associativity.

Appendix C: Answers to Checkpoints A tool students can use to assess their understanding
by comparing their answers to the Checkpoint exercises found throughout the book. The
answers to all Checkpoint exercises are included.

Appendix D: Answers to Odd-Numbered Review Questions Another tool students can use
to gauge their understanding and progress.

Additional Appendices on the Book’s Companion Website

Appendix E: A Brief Introduction to Object-Oriented Programming An introduction to
the concepts and terminology of object-oriented programming.

Appendix F: Using UML in Class Design A brief introduction to the Unified Modeling
Language (UML) class diagrams with examples of their use.

Appendix G: Multi-Source File Programs A tutorial on how to create, compile, and
link programs with multiple source files. Includes the use of function header files, class
specification files, and class implementation files.

Appendix H: Multiple and Virtual Inheritance A self-contained discussion of the C++
concepts of multiple and virtual inheritance for anyone already familiar with single inheritance.

Appendix I: Header File and Library Function Reference A reference for the C++ library
functions and header files used in the book.

Appendix J: Namespaces An explanation of namespaces and their purpose, with examples
provided on how to define a namespace and access its members.

Appendix K: C++ Casts and Run-Time Type Identification An introduction to different
ways of doing type casting in C++ and to run-time type identification.

Appendix L: Passing Command Line Arguments An introduction to writing C++ programs
that accept command-line arguments. This appendix will be useful to students working in a
command-line environment, such as UNIX or Linux.

Appendix M: Binary Numbers and Bitwise Operations A guide to the binary number
system and the C++ bitwise operators, as well as a tutorial on the internal storage of integers.

Appendix N: Introduction to Flowcharting A tutorial that introduces flowcharting and
its symbols. It includes handling sequence, selection, case, repetition, and calls to other
modules. Sample flowcharts for several of the book’ example programs are presented.

aaaaaaaaa

)

Preface

Features of the Text

Concept Statements

Example Programs

Program Output

Tying It All Together

VideoNotes

Checkpoints

Notes

Warnings

Case Studies

Review Questions
and Exercises

Programming Challenges

Each major section of the text starts with a concept statement. This
statement summarizes the key idea of the section.

The text has over 350 complete example programs, each designed to
highlight the topic currently being studied. In most cases, these are
practical, real-world examples. Source code for these programs is
provided so that students can run the programs themselves.

After each example program there is a sample of its screen output.
This immediately shows the student how the program should
function.

This special section, found at the end of every chapter, shows the
student how to do something clever and fun with the material
covered in that chapter.

A series of online videos, developed specifically for this book, are
available for viewing at http://www.pearsonhighered.com/
gaddis/. VideoNote icons appear throughout the text, alerting the
student to videos about specific topics.

Checkpoints are questions placed throughout each chapter as a self-
test study aid. Answers for all Checkpoint questions are provided in
Appendix C at the back of the book so students can check how well
they have learned a new topic.

Notes appear at appropriate places throughout the text. They are
short explanations of interesting or often misunderstood points
relevant to the topic at hand.

Warnings caution the student about certain C++ features, programming
techniques, or practices that can lead to malfunctioning programs or
lost data.

Case studies that simulate real-world applications appear in many
chapters throughout the text, with complete code provided for each
one. Additional case studies are provided on the book’s companion
website. These case studies are designed to highlight the major
topics of the chapter in which they appear.

Each chapter presents a thorough and diverse set of review questions,
such as fill-in-the-blank and short answer, that check the student’s
mastery of the basic material presented in the chapter. These are
followed by exercises requiring problem solving and analysis, such
as the Algorithm Workbench, Predict the Output, and Find the Errors
sections. Each chapter ends with a Soft Skills exercise that focuses on
communication and group process skills. Answers to the odd-
numbered review questions and review exercises are provided in
Appendix D at the back of the book.

Each chapter offers a pool of programming exercises designed to
solidify the student’s knowledge of the topics currently being
studied. In most cases the assignments present real-world problems
to be solved.

xxi

http://www.pearsonhighered.com/gaddis/
http://www.pearsonhighered.com/gaddis/

xxii

Preface

Group Projects There are several group programming projects throughout the text,
intended to be constructed by a team of students. One student
might build the program’s user interface, while another student
writes the mathematical code, and another designs and implements
a class the program uses. This process is similar to the way many
professional programs are written and encourages teamwork within
the classroom.

C++ Quick For easy access, a quick reference guide to the C++ language is printed
Reference Guide on the inside back cover.
Supplements

Student Resources

The following items are available on the Gaddis Series resource page at
www.pearsonhighered.com/gaddis:

e Complete source code for every program included in the book

e Additional case studies, complete with source code

e Serendipity Booksellers ongoing software development project

o A full set of appendices (including several tutorials) that accompany the book

® Access to the book’s companion VideoNotes

® Links to download numerous programming environments and IDEs, including
MinGW C++ Compiler and wxDev-C++ IDE

Instructor Resources

The following supplements are available to qualified instructors only.

e Answers to all Review Questions in the text

e Solutions for all Programming Challenges in the text
e PowerPoint presentation slides for every chapter

* A computerized test bank

e A collection of lab materials

e Source code files

Visit the Pearson Education Instructor Resource Center (http://www.pearsonhighered.com/irc)
for information on how to access them.

Practice and Assessment with MyProgrammingLab

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of
programming. Through practice exercises and immediate, personalized feedback,
MyProgrammingLab improves the programming competence of beginning students who
often struggle with the basic concepts and paradigms of popular high-level programming
languages. A self-study and homework tool, a MyProgrammingLab course consists of
hundreds of small practice exercises organized around the structure of this textbook. For
students, the system automatically detects errors in the logic and syntax of their code
submissions and offers targeted hints that enable them to figure out what went wrong. For
instructors, a comprehensive gradebook tracks correct and incorrect answers and stores
the code input by students for review.

www.pearsonhighered.com/gaddis
http://www.pearsonhighered.com/irc

Preface

MyProgrammingLab is offered to users of this book in partnership with Turing’s Craft, the
makers of the Codelab interactive programming exercise system. For a full demonstration,
to see feedback from instructors and students, or to get started using MyProgrammingLab in
your course, visit MyProgrammingLab.com.

Integrated Development Environment (IDE) Resource Kits

Instructors who adopt this text for their students can also order an accompanying kit that
contains the following popular C++ development environments:

Microsoft® Visual Studio 2010 Express Edition
Dev C++

NetBeans

Eclipse

CodelLite

The kit also provides access to a website containing written and video tutorials for getting
started in each IDE. For ordering information, please contact your Pearson Education
Representative or visit www.pearsonhighered.com/cs.

xxiii

www.pearsonhighered.com/cs

Xxiv

Preface

Acknowledgments

There have been many helping hands in the development and publication of this text. We
would like to thank the following faculty reviewers for their helpful suggestions and

expertise.

Reviewers of the Eighth Edition or Its Previous Versions

Ahmad Abuhejleh

University of Wisconsin, River Falls
David Akins

El Camino College

Steve Allan

Utah State University

Ljaz A. Awan

Savannab State University

John Bierbauer
North Central College

Don Biggerstaff

Fayetteville Technical Community College
Paul Bladek

Spokane Falls Community College
Chuck Boehm

Dean Foods, Inc.

Bill Brown

Pikes Peak Community College
Richard Cacace

Pensacola Junior College

Randy Campbell

Morningside College

Stephen P. Carl

Wright State University

Wayne Caruolo

Red Rocks Community College
Thomas Cheatham

Middle Tennessee State University
James Chegwidden

Tarrant County College

John Cigas

Rockhurst University

John Cross

Indiana University of Pennsylvania
Fred M. D’Angelo

Pima Community College

Joseph DeLibero
Arizona State University

Dennis Fairclough
Utah Valley State College

Larry Farrer

Guilford Technical Community College
Richard Flint

North Central College

Sheila Foster

California State University Long Beach
David E. Fox

American River College

Cindy Fry

Baylor University

Peter Gacs

Boston University

Cristi Gale

Sterling College

James Gifford

University of Wisconsin, Stevens Point
Leon Gleiberman

Touro College

Simon Gray

Ashland University—Obhio

Margaret E. Guertin

Tufts University

Jamshid Haghighi

Guilford Technical Community College
Ranette H. Halverson

Midwestern State University,

Wichita Falls, TX

Dennis Heckman

Portland Community College

Ric Heishman

Northern Virginia Community College
Patricia Hines

Brookdale Community College

Mike Holland

Northern Virginia Community College
Lister Wayne Horn

Pensacola Junior College

Richard Hull

Lenoir-Rhyne College

Norman Jacobson
University of California, Irvine

Eric Jiang

San Diego State University
Yinping Jiao

South Texas College
Neven Jurkovic

Palo Alto College

David Kaeli

Northeastern University

Chris Kardaras
North Central College

Eugene Katzen
Montgomery College—Rockuille

Willard Keeling

Blue Ridge Community College
A. J. Krygeris

Houston Community College
Ray Larson

Inver Hills Community College
Stephen Leach

Florida State University

Parkay Louie

Houston Community College

Zhu-qu Lu
University of Maine, Presque Isle

Tucjer Maney

George Mason University

Bill Martin

Central Piedmont Community College
Svetlana Marzelli

Atlantic Cape Community College
Debbie Mathews

J. Sargeant Reynolds

Ron McCarty

Penn State Erie, The Bebrend College

Robert McDonald
East Stroudsburg University

James McGuffee
Austin Community College

M. Dee Medley

Augusta State University
Cathi Chambley-Miller
Aiken Technical College

Sandeep Mitra

SUNY Brockport

Frank Paiano

Southwestern Community College

Theresa Park
Texas State Technical College

Preface

Mark Parker

Shoreline Community College
Robert Plantz

Sonoma State University

Tino Posillico

SUNY Farmingdale

Mahmoud K. Quweider
University of Texas at Brownsville
M. Padmaja Rao

Francis Marion University
Timothy Reeves

San Juan College

Ronald Robison

Arkansas Tech University
Caroline St. Clair

North Central College

Dolly Samson

Weber State University

Kate Sanders

Rhode Island College

Lalchand Shimpi

Saint Augustine’s College

Sung Shin

South Dakota State University
Barbara A. Smith

University of Dayton

Garth Sorenson

Snow College

Donald Southwell

Delta College

Daniel Spiegel

Kutztown University

Ray Springston

University of Texas at Arlington
Kirk Stephens

Southwestern Community College
Cherie Stevens

South Florida Community College
Joe Struss

Des Moines Area Community College
Hong Sung

University of Central Oklaboma
Sam Y. Sung

South Texas College

Mark Swanson

Red Wing Technical College

Martha Tillman
College of San Mateo

XXv

XXVi

Preface

Delores Tull Doug White

Itawamba Community College University of Northern Colorado
Rober Tureman Chris Wild

Paul D. Camp Community College Old Dominion University

Jane Turk Catherine Wyman

LaSalle University DeVry Institute of Technology, Phoenix
Sylvia Unwin Sherali Zeadally

Bellevue Community College University of the District of Columbia
Stewart Venit Chaim Ziegler

California State University, Los Angeles Brooklyn College

David Walter

Virginia State University

The authors would like to thank their students at Haywood Community College and
North Central College for inspiring them to write student-friendly books. They would also
like to thank their families for their tremendous support throughout this project, as well as
North Central College for providing Prof. Walters and Muganda with the sabbatical term
during which they worked on this book. An especially big thanks goes to our terrific
editorial, production, and marketing team at Addison-Wesley. In particular we want to
thank our editor Matt Goldstein and our production project manager Kayla Smith-Tarbox,
who have been instrumental in guiding the production of this book. We also want to thank
our project manager, Mohinder Singh, who helped everything run smoothly, and our
meticulous and knowledgable copyeditor, Linthoingambi Khaidem, who dedicated many
hours to making this book the best book it could be. You are great people to work with!

About the Authors

Tony Gaddis is the principal author of the Starting Out With . . . series of textbooks. He is
a highly acclaimed instructor with twenty years of experience teaching computer science
courses at Haywood Community College. Tony was previously selected as the North
Carolina Community College “Teacher of the Year” and has received the Teaching
Excellence award from the National Institute for Staff and Organizational Development.
The Starting Out With . . . series includes introductory books covering C++, Java'™,
Microsoft® Visual Basic®, Microsoft® C#, Python, Programming Logic and Design, and

Alice, all published by Pearson/Addison-Wesley.

Judy Walters is an Associate Professor of Computer Science at North Central College in
Naperville, Illinois, where she teaches courses in both Computer Science and Interactive
Media Studies. She is also very involved with International Programs at her college and has
spent two semesters teaching in Costa Rica, where she hopes to retire some day.

Godfrey Muganda is an Associate Professor of Computer Science at North Central College.
He teaches a wide variety of courses at both the undergraduate and graduate levels, including
courses in Algorithms, Computer Organization, Web Applications, and Web Services. His
primary research interests are in the area of Fuzzy Sets and Systems.

oooQ
Ooogoon

0 o e e
i L i) i

ooops .
ooun g Introduction to Computers
e - and Programming

TOPICS

1.1 Why Program? 1.4 What Is a Program Made of?

1.2 Computer Systems: Hardware and 1.5 Input, Processing, and Output
Software 1.6 The Programming Process

1.3 Programs and Programming Languages 1.7 Tying It All Together: Hi! It’s Me

—
1.1) Why Program?

1 CONCEPT: Computers can do many different jobs because they are programmable.

Think about some of the different ways that people use computers. In school, students use
computers for tasks such as writing papers, searching for articles, sending e-mail, and
participating in online classes. At work, people use computers to analyze data, make
presentations, conduct business transactions, communicate with customers and coworkers,
control machines in manufacturing facilities, and do many other things. At home, people use
computers for tasks such as paying bills, shopping online, social networking, and playing
games. And don’t forget that smart phones, iPods®, car navigation systems, and many other
devices are computers as well. The uses of computers are almost limitless in our everyday
lives.

Computers can do such a wide variety of things because they can be programmed. This means
that computers are not designed to do just one job, but to do any job that their programs tell
them to do. A program is a set of instructions that a computer follows to perform a task. For
example, Figure 1-1 shows screens using Microsoft Word and PowerPoint, two commonly
used programs.

2

Chapter 1 Introduction to Computers and Programming

Figure 1-1 A Word Processing Program and a Presentation Program

= et A:Bb(inncn| ‘h .
e TE R p“-“‘- oy
e

‘What do the term digital dats” and “digsal device” meand

1* Quarter

How a Program Warks

Comeept: A computer’s CFL

eller,
niythe partof the computer thet rum peogr: mamm-mn-{mhun.un-

lmaritedd.

tha £PU In the

m.n..d—w... shouild arherstand that the cmm-q fihmaiorarihinaiing o)

da wpacific I partlcadar, the £801 Iy

dhsigrndto jre forsm uper etion. iach a3 the fllwing:

® Beadiog a plece of data from main memory
= ckiing t numbars

* Multipling twe numbart

* Moving a piece of daza from one memGry cation to saather

Subtracting o rumber from snothar mambes

Dividing one nusbet by anather umber

et s forth .

Gudm mm-ﬁmw 1 ks 30 b nsdd whart 10 do, and that's the

pleces of data. The

Programs are commonly referred to as soffware. Software is essential to a computer
because without software, a computer can do nothing. All of the software that we use to
make our computers useful is created by individuals known as programmers or software
developers. A programmer, or software developer, is a person with the training and skills
necessary to design, create, and test computer programs. Computer programming is an
exciting and rewarding career. Today you will find programmers working in business,
medicine, government, law enforcement, agriculture, academics, entertainment, and
almost every other field.

Computer programming is both an art and a science. It is an art because every aspect of a
program should be designed with care and judgment. Listed below are a few of the things
that must be designed for any real-world computer program:

e The logical flow of the instructions

The mathematical procedures

The appearance of the screens

The way information is presented to the user

The program’s “user-friendliness”

Manuals and other forms of written documentation

There is also a scientific, or engineering side to programming. Because programs rarely
work right the first time they are written, a lot of experimentation, correction, and
redesigning is required. This demands patience and persistence of the programmer. Writing
software demands discipline as well. Programmers must learn special languages like C++
because computers do not understand English or other human languages. Languages such
as C++ have strict rules that must be carefully followed.

Both the artistic and scientific nature of programming makes writing computer software
like designing a car. Both cars and programs should be functional, efficient, powerful, easy
to use, and pleasing to look at.

Computer Systems: Hardware and Software

—
1.2 Computer Systems: Hardware and Software

1 CONCEPT: All computer systems consist of similar hardware devices and software
components. This section provides an overview of standard computer
hardware and software organization.

Hardware

Hardware refers to the physical components that a computer is made of. A computer, as
we generally think of it, is not an individual device, but a system of devices. Like the
instruments in a symphony orchestra, each device plays its own part. A typical computer
system consists of the following major components:

1. The central processing unit (CPU)

2. Main memory (random-access memory, or RAM)
3. Secondary storage devices

4. Input devices

5. Output devices

The organization of a computer system is depicted in Figure 1-2.

Figure 1-2
e/
— Central Processing —
Unit
Output s
Devices 5

Main Memory
(RAM)

¢ Secondary
Storage Devices

>

4

Chapter 1

Introduction to Computers and Programming

The CPU

When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit, or CPU, is
the part of a computer that actually runs programs. The CPU is the most important
component in a computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices that weighed tons. They were made of
electrical and mechanical components such as vacuum tubes and switches. Today, CPUs
are small chips known as microprocessors that can be held in the palm of your hand. In
addition to being much smaller than the old electromechanical CPUs in early computers,
today’s microprocessors are also much more powerful.

The CPU’s job is to fetch instructions, follow the instructions, and produce some result.
Internally, the central processing unit consists of two parts: the control unit and the arithmetic
and logic unit (ALU). The control unit coordinates all of the computer’s operations. It is
responsible for determining where to get the next instruction and regulating the other major
components of the computer with control signals. The arithmetic and logic unit, as its name
suggests, is designed to perform mathematical operations. The organization of the CPU is
shown in Figure 1-3.

Figure 1-3

Central processing unit

(CPU)
Arithmetic and
logic unit
Instruction (A}‘U) Result
input output
> Y >

Control unit

A program is a sequence of instructions stored in the computer’s memory. When a
computer is running a program, the CPU is engaged in a process known formally as the
fetch/decodelexecute cycle. The steps in the fetch/decode/execute cycle are as follows:

Fetch The CPU’s control unit fetches, from main memory, the next instruction in the
sequence of program instructions.

Decode The instruction is encoded in the form of a number. The control unit decodes
the instruction and generates an electronic signal.

Execute The signal is routed to the appropriate component of the computer (such as
the ALU, a disk drive, or some other device). The signal causes the component
to perform an operation.

These steps are repeated as long as there are instructions to perform.

Computer Systems: Hardware and Software

Main Memory

You can think of main memory as the computer’s work area. This is where the computer
stores a program while the program is running, as well as the data that the program is
working with. For example, suppose you are using a word processing program to write an
essay for one of your classes. While you do this, both the word processing program and the
essay are stored in main memory.

Main memory is commonly known as random-access memory or RAM. It is called this
because the CPU is able to quickly access data stored at any random location in this
memory. RAM is usually a volatile type of memory that is used only for temporary storage
while a program is running. When the computer is turned off, the contents of RAM are
erased. Inside your computer, RAM is stored in small chips.

A computer’s memory is divided into tiny storage cells known as bytes. One byte is enough
memory to store just a single letter of the alphabet or a small number. In order to do
anything meaningful, a computer has to have lots of bytes. Most computers today have
millions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit stands
for binary digit. Computer scientists usually think of bits as tiny switches that can be either
on or off. Bits aren't actual “switches,” however, at least not in the conventional sense. In
most computer systems, bits are tiny electrical components that can hold either a positive
or a negative charge. Computer scientists think of a positive charge as a switch in the on
position and a negative charge as a switch in the off position.

Each byte is assigned a unique number known as an address. The addresses are ordered from
lowest to highest. A byte is identified by its address, in much the same way a post office box
is identified by an address, so that the data stored there can be located. Figure 1-4 shows a
group of memory cells with their addresses. The number 149 is stored in the cell with the
address 16, and the number 72 is stored at address 23.

Figure 1-4

o]

B 4] 5]

0]

=
HES
=] [of
5] [
2] =]
=

B 14] iE

149

2]

5
=
=
=

Secondary Storage

Secondary storage is a type of memory that can hold data for long periods of time—even when
there is no power to the computer. Frequently used programs are stored in secondary memory
and loaded into main memory as needed. Important information, such as word processing
documents, payroll data, and inventory figures, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A disk drive stores
data by magnetically encoding it onto a circular disk. Most computers have a disk drive
mounted inside their case. External disk drives, which connect to one of the computer’s
communication ports, are also available. External disk drives can be used to create backup
copies of important data or to move data to another computer.

6

Chapter 1

Introduction to Computers and Programming

In addition to external disk drives, many types of devices have been created for copying
data and for moving it to other computers. For many years floppy disk drives were
popular. A floppy disk drive records data onto a small, flexible (“floppy”) disk, which can
be removed from the drive. The use of floppy disk drives has declined dramatically in
recent years, in favor of superior devices such as USB flash drives. USB flash drives are
small devices that plug into the computer’s USB (universal serial bus) port and appear to
the system as a disk drive. These drives, which use flash memory to store data, are
inexpensive, reliable, and small enough to be carried in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are also
popular for data storage. Data is not recorded magnetically on an optical disc, but rather is
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect the
pits and thus read the encoded data. Optical discs hold large amounts of data, and because
recordable CD and DVD drives are now commonplace, they are good media for creating
backup copies of data.

Input Devices

Input is any information the computer collects from the outside world. The device that
collects the information and sends it to the computer is called an input device. Common
input devices are the keyboard, mouse, scanner, digital camera, and microphone. Disk drives,
CD/DVD drives, and USB flash drives can also be considered input devices because programs
and information are retrieved from them and loaded into the computer’s memory.

Output Devices

Output is any information the computer sends to the outside world. It might be a sales report,
a list of names, or a graphic image. The information is sent to an output device, which formats
and presents it. Common output devices are computer screens, printers, and speakers. Output
sent to a computer screen is sometimes called soft copy, while output sent to a printer is called
hard copy. Disk drives, USB flash drives, and CD/DVD recorders can also be considered output
devices because the CPU sends information to them so it can be saved.

Software

If a computer is to function, software is needed. Everything that a computer does, from the time
you turn the power switch on until you shut the system down, is under the control of software.
There are two general categories of software: system software and application software. Most
computer programs clearly fit into one of these two categories. Let’s take a closer look at each.

System Software

The programs that control and manage the basic operations of a computer are generally referred
to as system software. System software typically includes the following types of programs:

e Operating Systems
An operating system is the most fundamental set of programs on a computer. The
operating system controls the internal operations of the computer’s hardware, manages
all the devices connected to the computer, allows data to be saved to and retrieved from
storage devices, and allows other programs to run on the computer.

e Utility Programs
A utility program performs a specialized task that enhances the computer’s operation
or safeguards data. Examples of utility programs are virus scanners, file-compression
programs, and data-backup programs.

Programs and Programming Languages

* Software Development Tools
The software tools that programmers use to create, modify, and test software are
referred to as software development tools. Compilers and integrated development
environments, which we discuss later in this chapter, are examples of programs that
fall into this category.

Application Software

Programs that make a computer useful for everyday tasks are known as application software,
or application programs. These are the programs that people normally spend most of their
time running on their computers. Figure 1-1, at the beginning of this chapter, shows screens
from two commonly used applications Microsoft Word, a word processing program, and
Microsoft PowerPoint, a presentation program. Some other examples of application software
are spreadsheet programs, e-mail programs, Web browsers, and game programs.

Checkpoint

1.1 Why is the computer used by so many different people, in so many different professions?
1.2 List the five major hardware components of a computer system.

1.3 Internally, the CPU consists of what two units?

1.4 Describe the steps in the fetch/decode/execute cycle.

1.5 What is a memory address? What is its purpose?

1.6 Explain why computers have both main memory and secondary storage.

1.7 What are the two general categories of software?

1.8 What fundamental set of programs controls the internal operations of the computer’s
hardware?

1.9 What do you call a program that performs a specialized task, such as a virus scanner, a
file-compression program, or a data-backup program?

1.10 Word processing programs, spreadsheet programs, e-mail programs, Web browsers, and
game programs belong to what category of software?

=g
13 Programs and Programming Languages

1 CONCEPT: A program is a set of instructions a computer follows in order to perform a
task. A programming language is a special language used to write computer
programs.

What Is a Program?

Computers are designed to follow instructions. A computer program is a set of instructions
that tells the computer how to solve a problem or perform a task. For example, suppose we
want the computer to calculate someone’s gross pay. Here is a list of things the computer
might do:

1. Display a message on the screen asking “How many hours did you work?”

2. Wait for the user to enter the number of hours worked. Once the user enters a
number, store it in memory.

3. Display a message on the screen asking “How much do you get paid per hour?”

8

Chapter 1

<&

Introduction to Computers and Programming

4. Wait for the user to enter an hourly pay rate. Once the user enters a number, store it
in memory.

5. Multiply the number of hours by the amount paid per hour, and store the result in memory.

6. Display a message on the screen that tells the amount of money earned. The message
must include the result of the calculation performed in step 5.

Collectively, these instructions are called an algorithm. An algorithm is a set of well-defined
steps for performing a task or solving a problem. Notice these steps are ordered sequentially.
Step 1 should be performed before step 2, and so forth. It is important that these instructions
be performed in their proper sequence.

Although a person might easily understand the instructions in the pay-calculating algorithm,
it is not ready to be executed on a computer. A computer’s CPU can only process instructions
that are written in machine language. A machine language program consists of a sequence of
binary numbers (numbers consisting of only 1s and 0s), which the CPU interprets as
commands. Here is an example of what a machine language instruction might look like:

1011010000000101

As you can imagine, the process of encoding an algorithm in machine language is very
tedious and difficult. In addition, each different type of CPU has its own machine language.
If you wrote a machine language program for computer A and then wanted to run it on a
computer B that has a different type of CPU, you would have to rewrite the program in
computer B’s machine language.

Programming languages, which use words instead of numbers, were invented to ease the task
of programming. A program can be written in a programming language such as C++, which
is much easier to understand than machine language. Programmers save their programs in
text files, and then use special software to convert their programs to machine language.

Program 1-1 shows how the pay-calculating algorithm might be written in C++.

NOTE: The line numbers shown in Program 1-1 are not part of the program. This
book shows line numbers in all program listings to help point out specific parts of the
program.

Program 1-1

//

This program calculates the user's pay.

#include <iostream>
using namespace std;

int main()

{

double hours, rate, pay;
// Get the number of hours worked.
cout << "How many hours did you work? ";

cin >> hours;

(program continues)

Programs and Programming Languages

Program 1-1 (continued)

// Get the hourly pay rate.
cout << "How much do you get paid per hour? ";
cin >> rate;

// Calculate the pay.
pay = hours * rate;

// Display the pay.
cout << "You have earned $" << pay << endl;
return 0;

}

Program Output with Example Input Shown in Bold

How many hours did you work? 10 [Enter]
How much do you get paid per hour? 15 [Enter]
You have earned $150

The “Program Output with Example Input Shown in Bold” shows what the program will
display on the screen when it is running. In the example, the user enters 10 for the number of
hours worked and 15 for the hourly pay. The program displays the earnings, which are $150.

Programming Languages

In a broad sense, there are two categories of programming languages: low-level and high-
level. A low-level language is close to the level of the computer, which means it resembles
the numeric machine language of the computer more than the natural language of humans.
The easiest languages for people to learn are high-level languages. They are called “high-
level” because they are closer to the level of human-readability than computer-readability.
Figure 1-5 illustrates the concept of language levels.

Figure 1-5

High level (Easily read by humans)

Low level (machine language)
10100010 11101011

